國立屏東科技大學 100 學年度 碩士班暨碩士在職專班 招生考試 農企業管理系碩士班甲組、乙組 統計學試題

UNREGISTERED

- 一、選擇題 (50%, 單選, 每題 2.5% reak(倒址) nregistered Version
- 1. () 已知 X、Y 為兩獨立事件, P(X)=0.5, P(Y)=0.3, 則
- (A) $P(X \cap Y) = 0.30$ (B) $P(X \cup Y) = 0.65$ (C) $P(X \mid Y) = 0.30$ (D) $P(Y \mid X) = 0.70$
- 2. () 已知 X、Y 為互斥事件, P(X)=0.5, P(Y)=0.3, 則
- (A) $P(X \cap Y) = 0.15$ (B) $P(X \mid Y) = 0.50$ (C) $P(X \cup Y) = 0.80$ (D) $P(X \cap Y) = 0.30$
- 3.() 員工5人週薪分別為5千元、5.5千元、6.5千元、8千元及8千元,下列何者為真?
- (A) 眾數為 6 千元 (B) 中位數 5.5 千元 (C) 四分位距為 1.25 千元 (D) 平均數為 6.6 千元
- 4. () 隨機變數 x 之機率分配為 f(x) = 0.20 , x = 2 , 1 = 0.12 , 下列何者為真?
- (A) 累加機率 F(x=1)=0.8 (B) 期望值為 0.2 (C) 變異數為 0.2 (D) f(x)為連續分配
- Created by Unregistered Version 5. () 隨機變數 x 之機率分配為二項分配,實驗 3 次,每次成功機率為 0.5,下列機率何者為真?
- (A) P(x=1) > P(x=2) (B) P(x=0)=0 (C) P(x=2)=0.375 (D) P(x>4)=1

- 6. () 隨機變數 x 之機率分配為二項分配;實驗 5 次,每次成功機率 0.3,下列敘述何者錯誤?
- (A) 期望值為 1.5 (B) 變異係數為 70% (C) 變異數為 1.05 (D) 該機率分配為對稱分配
- 7.() 隨機變數 x 之機率分配為常態分配,其期望值與變異數分別以 μ , σ^2 表之, $\mu=10$, $\sigma^2=16$ 。 若以抽出放回方式,抽取 36 筆資料組成一組樣本。若樣本平均數以 x 表示,下列敘述何者錯誤?
- (A) $P(5 \le x \le 10) > P(5 \le \overline{x} \le 10)$ (B) $P(x \le 10) = P(\overline{x} \le 10)$

- (C) $\mu_{\bar{x}} = 10, \sigma_{\bar{x}}^2 = 16/36$
- $(D) \bar{x}$ 之抽樣分配為常態分配
- 8. () 隨機變數 x 之機率分配為常態分配,其期望值與變異數分別以 μ,σ^2 表之,若以抽出放回 方式,抽取 36 筆資料組成一組樣本。若樣本變異數以S²表示,下列敘述何者為真?
- (A) σ^2 之分配為卡方分配(B) S^2 之分配為常態分配(C) $E(S^2) = \sigma^2$ (D) $V(S^2) = 70$
- 9. ()下列關於自由度為 12 之卡方分配 $f(\chi^2)$ 的敘述,何者錯誤?
- (A) $E(\chi^2) = 12$ (B) $f(\chi^2)$ 為對稱分配 (C) χ^2 曲線位於第一象限 (D) $V(\chi^2) = 24$

表一、同個模型數以, S 之聯合機爭 f(x, y)

F(x, y)		Created by			
		-1	0	1	
	0	0.09	0.06	0.15	
X	1	0.15	0.10	0.25	
	2	0.06	0.04	0.10	
					1.0

- 10. () 兩隨機變數 x、y 之聯合機率 f(x, y) 如表一所示, 下列敘述何者錯誤?

- (A) f(x,y)=f(x)f(y) (B) f(y|x)=f(y) (C) E(x|y=1)=0.45 (D) E(x)=0.90
- 11. () 兩隨機變數 x、y 之聯合機率 f(x, y) 如表一所示,則 E(xy)=?
- $(A) 0.18 \qquad (B) 0.56$
- (C) 2.0 (D) 3.0

國立屏東科技大學 100 學年度 碩士班暨碩士在職專班 招生考試 農企業管理系碩士班甲組、乙組 統計學試題

UNREGISTERED

- 12. () 隨機變數 X 之機率分配為標準常態分配gis以可發越何者為真?
- (A) E(x)=1, V(x)=0

- (B) $P(x \ge 1.5) = P(x < 1.5)$
- $(C) P(x \ge 2) = 2P(x > 1)$
- (D) $P(0 \le x \le 0.5) = 0.5 P(x < -0.5)$
- 13. ()某廠商宣稱其每罐包裝之內容量達 300 公克以上(H₀:μ≥300),已知其重量分配為常態分 配,母體標準差為 10 公克。隨機抽取 16 罐測定其重量,得樣本平均數 295 公克,P 值=0.0228, 若顯著水準設為 0.05,以下敘述何者為真?
- (A) 2P 值小於 0.05,無法拒絕虛無假設 (B) 對立假設應設為 H_1 : $\mu ≠ 300$
- (C) 檢定統計量為自由度 15 之 t 統計量 (D) P.值人於 0.05, 拒絕虛無假設
- 14. () 測試 A1、A2 兩種包裝之平均容量是否相等,分別抽取 9 個及 16 個包裝進行測試。已知 Created by Unregistered Version 二母體皆為常態分配,且二母體之變異數未知但相等。若顯著水準 $\alpha=5\%$ 請問檢定統計量之臨界 值為何?(下標為右尾機率,括弧內為自由度,以下說明皆同)
- (A) $F_{0.025}(8,15)$ (B) $t_{0.025}(23)$ (C) $F_{0.05}(8,15)$ (D) $t_{0.05}(23)$

- 15. () 測試 B1、B2 兩種包裝容量之變異數是否相等,分別抽取 9 個包裝進行測試。已知二母 體皆為常態分配, $s_1^2 = 20, s_2^2 = 80$ 。顯著水準 $\alpha = 5\%$ 則以下【檢定統計量,檢定結果】之組合何者 正確? (已知 $\chi_{0.05}^2(16) = 26.30$; $\chi_{0.025}^2(16) = 28.85$; $F_{0.05}(8,8) = 3.44$; $F_{0.025}(8,8) = 4.43$)
- (A)【 χ^2 ,無法拒絕虛無假設】 (B)【 χ^2 ,拒絕虛無假設】
- (C)【F ,無法拒絕虛無假設】
- (D)【F , 拒絕虛無假設】

表二、群體與接受某產品之情形

群體	A	В	C	總計
接受	50	40	25	115
不接受	30	50	35	115
總計	80	90	60	230

- Created by Unregistered Version
 17. () 擬檢定 A、B、C 三群體對某產品之接受情形是否相同(如表二),檢定統計值為?
- (A) 1.16

- (B) 7.78 (C) 1.49 (D) (0.63 : 4.44 : 4.42)
- 18. ()用一因子變異數分析,進行 5 種處理之平均數 (μ,·i=1,2,...,5) 是否相等的檢定。若其基本 假設皆符合,以H₁表示對立假設,下列何者為真?
- (A)以卡方統計量檢定(B)拒絕域在雙尾(C) $H_1: \mu_1 \neq \mu_2 \neq ... \neq \mu_3$ (D) $H_1: \mu_1 \neq ... \neq \mu_3$ (D) $H_1: \mu_2 \neq ... \neq \mu_3$ (D) $H_1: \mu_3 \neq ... \neq \mu_3$ (D) $H_$
- 19. () 已知 $F_{0.05}(6,9) = 3.3738$, $F_{0.05}(9,6) = 4.0990$,請問 $F_{0.95}(6,9) = ?$

- (A) 0.2440 (B) 0.2964 (C) 0.4213 (D) 0.8231
- 20. () 有 4 組隨機變數(x、y)之觀察資料:(-1,0)、(0,4)、(1,2)、(2,6),其相關係數為:
- (A) 2.00
- (B) 0.80
- (C) 0.65
- (D) 0.92

國立屏東科技大學 100 學年度 碩士班暨碩士在職專班 招生考試 農企業管理系碩士班甲組、乙組 統計學試題

UNREGISTERED

二、計算與申論題(50%)

Created by Unregistered Version

某研究生獲得一筆實驗資料,含5種處理 $(A \times B \times C \times D \times E)$ 及產量,其中對應於 $A \times B \times C \times D \times E$ 之投入因素量(x)分別為0, 20, 40, 60, 80單位。其資料及部分敘述結果如表三所示。

表三、實驗資料及特性						
處理	A	В	C	D	E	
	(x=0)	(x=20)	(x=40)	(x=60)	(x=80)	
產量	15	18	21	26	23	
	22	25	28	33	30	
	23	REGI	STERE	D 34	31	
	25ea	ted by United	gistered Versi	ion 36	33	
平均數	21	24	27	32	29	
變異數	18.6667	18.6667	18.6667	18.6667	18.6667	

由於該筆資料似乎除了進行一因子變異數分析以外,似乎可以進行迴歸分析,因此該生將兩種分析結果皆加以計算,並獲得以下結果(已知該資料皆符合變異數分析及迴歸分析之所有基本假設)。

- 1. 部份表格內容不全,請完成該表之空缺值(括弧1至10,每題2%,合計20%)。
- 2. 請進行一因子變異數分析之檢定,並對結果加以說明(10%)。
- 3. 請進行迴歸分析之檢定,並對結果加以說明(10%)。
- 4. 請說明此兩種分析有何差異(10%)?

一因子變異數分析之 ANOVA 表

變源	SS	自由度	MS	F	P-值
組間	292.8	4	(3)	3.92	0.0225
組內	(1)	15	(4)		
總和	(2)	19			

UNREGISTERED

迴歸分析 ANOVA 表

	•		— Created by		red Version
	SS	自由度	MS	F	顯著值
迴歸	230.4	(5)	(7)	(9)	(10)
殘差	342.4	(6)	(8)		
總和	572.8	19			

迴歸分析之係數估算結果

	係數	t 統計	P-值
截距	21.80	12.91	1.55E-10
X	0.12	3.48	0.002671