
- 一 、 解釋名詞:(20%)
  - 1. 應力路徑(Stress path)。
  - 2. 地工泡沫材(Geofoam)。
  - 3. 雙比重計比試驗(DHR)。
  - 4. Skempton 孔隙水壓參數 A。
- 二、某聚酯類(PET)地工加勁格網之極限抗張強度為 150 kN/m , 如採用此加勁格網應用於加勁擋土牆施工 , 試問此加勁格網之設計許可強度為何 ? 請參考如下折減係數分析。(20%)

| Application Area | RFID       | RFcr       | RFcD       | RF <sub>BD</sub> |
|------------------|------------|------------|------------|------------------|
| Embankments      | 1.1 to 1.6 | 2.0 to 3.6 | 1.1 to 1.5 | 1.0 to 1.4       |
| Slopes           | 1.2 to 1.6 | 2.0 to 3.5 | 1.2 to 1.5 | 1.0 to 1.3       |
| Walls            | 1.1 to 1.4 | 2.0 to 3.2 | 1.1 to 1.4 | 1.0 to 1.2       |
| Bearing Capacity | 1.2 to 1.5 | 2.0 to 3.4 | 1.1 to 1.6 | 1.0 to 1.1       |

三、下圖所示為一定水頭透水試驗儀,試分析點 A 及點 B 之總水頭、位置水頭及壓力水頭(以公尺表示),分析中假設水位基準面位於下水槽水位面,並估算每分鐘滲流量及於土壤 I 及土壤 II 之滲流梯度及滲流流速(cm/sec)。土壤 I 之透水路徑長二公尺,透水面積為 2.0m²、透水係數為 1.0 cm/sec、孔隙率為 0.6,點 A 位於土壤 I 之透水路徑中點;土壤 II 之透水路徑長三公尺,透水面積為 5.0m²、透水係數為 0.6 cm/sec、孔隙率為 0.5,點 B 位於土壤 II 之透水路徑中點。假設達西公式適用。(25%)



四、某方型基礎座落於沉泥質鬆砂上,此砂土之單位重為 18kN/m³、剪力強度參數 c=0、 =32°, 承載力因數 Nc=35.49、Nq=23.18、N =30.22, 此基礎寬三公尺,基礎埋入深度為一公尺,地表至地表下四公尺平均 SPT-N 值為 3, 地表下四公尺至七公尺平均 SPT-N 值為 5, 請分析如下問題: (20%)

1. 假設此基礎荷載將集中於其中心點,基礎荷載於基礎寬度方向具 10°之傾角,但縱身向無傾角, 請分析此基礎之極限總承載力,各修正因數如下:

$$F_{qs} = 1 + \frac{B}{L}\tan \mathbf{f}, \quad F_{rs} = 1 - 0.4 \frac{B}{L}, \quad F_{qd} = 1 + 2\tan \mathbf{f}(1 - \sin \mathbf{f})^2 \frac{Df}{B}$$

$$F_{rd} = 1.0, \quad F_{qi} = (1 - \frac{B^{\circ}}{90^{\circ}})^2, \quad F_{ri} = (1 - \frac{B}{\mathbf{f}})^2, \quad \tan \mathbf{f} = 0.62$$

2. 當此基礎承受垂直向均勻 108 kN/m²之荷載,請以 Schmertmann 法估算此基礎立即沉陷量及承載 10 年後之沉陷量。

$$\overline{q} =$$
基礎面上之應力, $q = gD_f$ , $S_e = c_1c_2(\overline{q} - q)\sum_0^z \frac{I_z}{E_s}$ , $c_1 = 1 - 0.5(\frac{q}{\overline{q} - q})$ , $c_2 = 1 + 0.2\log(\frac{\Xi}{0.1})$ , $E_s(kN/m^2) = 766N$ , $I_z = 0.1$  在  $z = 0$ , $I_z = 0.5$  在  $z = 0.5B$ , $I_z = 0$  在  $z = 2.0B$ 。

五、工地密度試驗取回土樣重 2055 公克,經烘乾後為 1755 公克,現地工地密度試驗開挖孔洞需以 1875 公克之標準砂填滿,標準砂之單位重為 1.50 g/cm³,如此土壤之飽和度為 50%,試分析此土壤之孔隙比(e)、單位體積乾重(d)、土壤顆粒基重(Gs)為何?假設水之單位重為 1.0 g/cm³。(15%)