- 1. 解一階微分方程式 $\frac{dQ}{dt} + \frac{1}{2}Q = 6$, Q(0) = 0 。 (10%)
- 2. 高斯消去法(Gauss elimination)普遍用於線性方程式系統(linear systems of

- 3. 試求矩陣 $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ 之特徵值(eigenvalues)與特徵向量(eigenvectors)。 (10%)
- 4. 一固定直角座標系統 $\begin{pmatrix} x & y & z \end{pmatrix}$ 上有四個點 $P_0\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$, $P_1\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$, $P_2\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$, $P_3\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, 將任意兩點以一直線線段相連 , 可組成一個四面體 , 試求此四面體的體積(提示:角錐為角柱體積的 1/3)。 (10%)
- 5. 解二階微分方程式 $m \frac{d^2 y}{dt^2} + k \ y = \cos \mathbf{w} \ t \left(\mathbf{w} \neq \sqrt{k/m} \right)$ 之通解(general solution), 其中 m, k 與 \mathbf{w} 為固定之常數。(20%)
- 6. 解二階微分方程式 $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = r(t) = \begin{cases} 1 & 0 \le t \le 1 \\ 0 & t > 1 \end{cases} = 1 u(t-1)$, 起始條件為 y(0) = 0和 $\frac{dy}{dt}\Big|_{t=0} = 0$, 其中 u(t) 為單位步階函數(unit step function). (20%)
- 7. 一函數 f(x) 稱之為週期性函數,若它是定義於所有實數 x,而且對於所有 x,若有某正數 p 使得 f(x) = f(x+p); f(x) 之週期(period)為最小值之 p。 週期性函數可展開成 Fourier 級數 $f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{n \mathbf{p}}{L} x \right) + b_n \sin \left(\frac{n \mathbf{p}}{L} x \right) \right]$, -L < x < L,函數的週期 p = 2L。 試求函數 $f(x) = \cos 3x \sin 7x$ 的週期,併將函數 f(x) 表示成 Fourier 級數的型式。 (20%)