國立屏東科技大學 九十三 學年度 碩士班暨碩士在職專班 招生考試 車輛工程系碩士班 甲組

專業科目(二)自動控制 試題

1. Find the transfer function of the following system, $G(s) = \frac{X_3(s)}{F(s)}$ where $X_3(s)$ and F(s) are the Laplace transform of $X_3(t)$ and $Y_3(t)$ and $Y_3(t)$, respectively, as shown in Fig.1

(20 points)

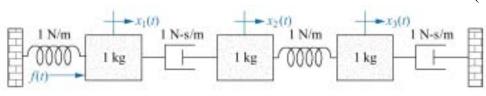


Fig1.

2. Find the transfer function G(s) = C(s)/R(s) of the following system. (15 points)

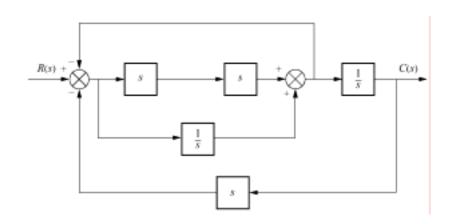


Fig2.

3. Given an unity feedback system with $G(s) = \frac{K(s+1)}{s(s+2)(s+3)(s+4)}$ (20 points)

Fig3.

Please do the following:

- (1) Sketch the root locus
- (2) Find the intersection of asymptotes
- (3) Find the value of gain that will make the system marginally stable.
- (4) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at -0.5.

國立屏東科技大學 九十三 學年度 碩士班暨碩士在職專班 招生考試 車輛工程系碩士班 甲組

專業科目(二)自動控制 試題

4. Determine the conditions on b_1, b_2, c_1 and c_2 so that the following system is completely controllable and observable. (15 points)

$$\frac{dX(t)}{dt} = AX(t) + Bu(t) \qquad y = CX(t)$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \qquad C = \begin{bmatrix} c_1 & c_2 \end{bmatrix}$$

5. Given the dynamic equations of a time-invariant system:

(15 points)

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t) \qquad y = Cx(t)$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \qquad x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

Find the matrices A_1 and B_1 so that the state equations are written as

$$\frac{d\overline{x}(t)}{dt} = A_1 \overline{x}(t) + B_1 u(t)$$

where
$$\bar{x}^T = \begin{bmatrix} x_1(t) & y(t) & \frac{dy(t)}{dt} \end{bmatrix}$$

6. The specifications on a second order system with the closed-loop transfer function

$$T(s) = \frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

are that the maximum overshoot must not exceed 10 percent, and the rising time must be less than 0.1 sec. Find the corresponding limiting values of resonant peak M_r and bandwidth B_w analytically. (15 points)