
國立屏東科技大學 九十五 學年度 碩士班暨碩士在職專班招生考試 自動控制(車輛工程系 試題)

- 1. A unity-feedback system is shown in Fig. 1. It is known that $G = \frac{3}{s^2 + 4s}$, H = 1, then
 - (A)What is its output time response when $R = u_s(t)$? (10 分)
 - (B)What is the output steady-state error when $R = tu_s(t)$? (10 分)

Note: $u_s(t)$ is a unit-step function.

2. The dynamic equation of a SISO system is:

$$\dot{\mathbf{X}} = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U}$$
$$\mathbf{Y} = \mathbf{C}\mathbf{X} + \mathbf{D}\mathbf{U}$$

where Y is the output, U is the input, and

$$\mathbf{A} = \begin{bmatrix} -3 & 4 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \quad \mathbf{D} = 5$$

- (A)What is the characteristic equation of the system? (10 分)
- (B)Is the system controllable? (10 分)
- 3. A unity-feedback system is shown in Fig. 1. It is known that $G = \frac{K(s+10)}{s(s+1)(s+100)}$, and H = 1,
 - (A) If K=1, give the bode plot of the open-loop transfer function G. (10 分)
 - (B) If K=1, give the Nyquist plot of the system and determine whether the closed-loop system is stable or not? (10 分)
 - (C) Determine the range of K such that the system is stable. (10 分)

國立屏東科技大學 九十五 學年度 碩士班暨碩士在職專班招生考試 自動控制(車輛工程系 試題)

4. As shown in Fig. 2, i_1 is the current on L_1 and i_2 is the current on L_2 . Let $x_1 = i_1$, $x_2 = i_2$,

 $x_3 = \frac{di_1}{dt}$, and $x_4 = \frac{di_2}{dt}$. Please write down its state equation. (15 分)

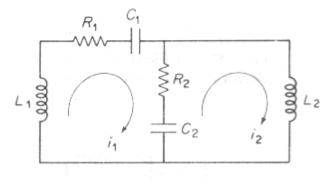


Fig. 2

5. The characteristic equation of a system is

$$s(s+2)(s+3)(s+8) + k(s+4) = 0.$$

Please construct its root loci and show poles, zeros, and asymptotes. (15 分)