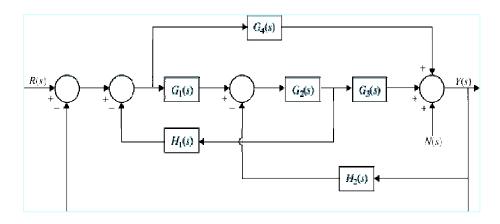

國立屏東科技大學 九十六 學年度碩士班暨碩士在職專班招生考試

UNRE自動控制RED

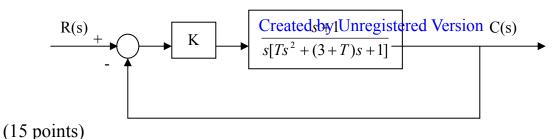
1. The block diagram of a PD control system is shown below Created by Unregistered Version



where $G(s) = \frac{2}{s^2 + 1}$ and the transfer function of the PD controller is $G_c = K_P + K_D s$

- (a) Find K_p and K_D on which the damping is critical and the natural undamped frequency ω_n is 5 rad/sec.
- (b) From part (a), with unity-step input, and the steady state error.
- (c) From part (a), with unity-step input find the steady-state value of y(t).
- (d) Find the parabolic-error constant K_a .

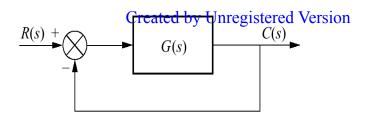
(20 points)


2. For a system block diagram shown below

Please find the transfer function $\frac{Y(s)}{R(s)} = ?$

(15 points)

3. Please find the range of K and Touth Rabit Soft Register Ploop system?



4. Consider a unity feedback system with open-loop delay transfer function as shown in the following figure, where $G(s) = \frac{3e^{-sT}}{s(s+2\sqrt{2})}$. What is the maximum time delay T without destroying the

closed-loop stability?

國立屏東科技大學 九十六 學年度碩士班暨碩士在職專班招生考試

UNRE含熱控制RED

(15points)

5. A control system is represented by the following state equations:

$$\dot{x}_1 = 3x_1 - 8x_2$$

$$\dot{x}_2 = 4x_1 + u$$

The control law is designed as the following state feedback form UNREGESTERED

where a and b are real constants: Determine and sketch the region of a and b for the overall system to be stable. Please put a as the x-axis and b as the y-axis.

(20 points)

6. For a dynamic system with state equations:

$$\dot{x}_1 = -x_2 + u$$

$$\dot{x}_2 = -3x_1 + 2x_2 - 3u$$

$$v = x.$$

- (a) Determine the controllability and observability of the system.
- (b) Find the transfer function $\frac{Y(s)}{U(s)}$
- (c) Is it possible to use output feedback control u = -ky for arbitrary pole assignment? (15 points)

UNREGISTERED

Created by Unregistered Version