UNREGISTERED

是非題 (20 題共 40%, 每題 2%) reated by Unregistered Version

請回答以下所有是非題,答案務必寫在答案卷中。

- 1. 啟動 132 hp(馬力)的汽車引擎 1 小時能產生約 637 MJ 的功。(1kW=1.341 hp)
- 2. 1 g 在 101.325 kPa 與 30°C 的水會佔據 1.043 cm³ 的空間。
- 3. 內函性質(intensive property)的值會隨著系統(system)的大小而改變。
- 4. 在壓力 100 kPa 和溫度 90°C 下的壓縮水(compressed wither), 其焓(enthalpy)為 377.0709

 kJ/kg。 Created by Unregistered Version
- 5. 在壓力為 20 kPa 時, 2 kg 的飽和過冷水(saturated subcooled water)吸收 2357.5 kJ 的熱能後會 完全變成飽和過熱水(saturated superheated water)。
- 6. 氣體的乾度(quality) 一般上介於 0 與 1 之間,但若該氣體非常乾燥則其乾度極有可能大於 1。
- 7. 不論任何氣體在極低的壓力下均可視為理想氣體。
- 8. 壓縮性因數(compressibility factor)的值偏離 0 越遠,則氣體偏離理想氣體性質越多。
- 9. 固態相的定容比熱(specific heat at constant volume)和定壓比熱(specific heat at constant pressure)的值皆為相同。
- 10. 任何一個循環所產生的淨功必定等於該循環所釋放的熱能的淨量。
- 11. 空氣通過絕熱節氣閥時,該過程中空氣的溫度保持不變。

- 12. 某熱機(heat engine)從一 $1000~\rm K$ 的高溫熱源接收 $500~\rm kJ$ 的熱能,並把廢熱排出 $300~\rm K$ 的低溫源,而同時輸出 $338~\rm kJ$ 的功是可能的。
- 13. 克勞休斯不等式(Clausius inequality)表示 $\oint \frac{\delta Q}{T} \le 0$ 。
- 14. 某冰箱之食物室以 360 kJ/min 的熱移除率而予以維持於 4°C,若需輸入冰箱之功率為 2 kW,其性能係數為 3。
- 15. 如果某實際過程(process)會使熵(entropy)增加,則此過程是可能的。

UNREGISTERED

- 16. 『熱移除』(heat removal)是減出開放,到統(open-stystem)中所含有的熵的唯一方法。
- 17. 有一理想氣體最初狀態為 140 kPa 與 510 K,經過等熵過程可壓縮成 405 kPa 與 780 K 的最終狀態。(假設:比熱比(specific heat ratio) k = 1.4)
- 18. 卡諾循環(Carnot cycle),由四個可逆過程組成:兩個可逆等溫過程(reversible isothermal process)和兩個可逆絕熱過程(reversible adiabatic process)。
- 19. 一個往復式引擎(reciprocating regime)的有意體育(pisplacement volume)與壓縮比 (compression ratio)分別為 300 rente與Molar智識循環可認定生 0.27 kJ 的功,則其平均有效壓力(mean effective pressure, MEP)可估算為 1 MPa。
- **20.** 狄賽爾循環(Diesel cycle)的熱效應計算公式為 $\eta_{th,Diesel} = 1 \frac{1}{r^{k-1}}$ 。(r 為壓縮比(compression ratio); k 為比熱比(specific heat ratio))

簡答題(2 題共 20%, 每題 10%)

請回答以下所有簡答題,答案務必寫在答案卷中。

- 1. 水的溫度為 23°C 以及焓為 3 kJ/kg·K 時, 試求其乾度(quality)為多少?
- 2. 請簡單描述熱力學第三定律(third law of thermodynamics)。

計算題(2 題共 40%, 每題 20%)

請回答以下所有計算題,答案務必為在答案卷中,並詳細為出步驟。

- 1. 一活塞-汽缸裝置內裝有 0.16 kg 與 80 °C 的空氣,以溫度維持固定的方式從最初時的 0.2 m³ 變成最終壓力為 10 kPa。請正確繪出 P-V 圖並完整標示所有數值,再求此過程的功為多少 kJ?(R = 0.287 kJ/kg·K)
- 2. 水以質量流率 5 kg/s 流進一個垂直圓柱容器裡,而從容器底部流出,其質量流率隨容器內水的高度而改變,即 m_e = 1.0 H kg/s, H 為水在容器內瞬間高度(單位為 m)、底部圓面積為 0.2 m²、水的密度為 1000 kg/m³。假設容器一開始為真空,計算液體高度隨時間的變化為何。

UNREGISTERED

附錄 1.

Created by Unregistered Version

TABLE A-4 Saturated water—Temperature table												
		Specific volume, m³/kg		<i>Internal energy,</i> kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 23.25 2318.4	2374.9 2381.8 2388.7 23 5.5 4 2.3	0.001 21.020 42.022 62.92 82.915	2500.9 2489.1 2477.2	2500.9 2510.1 2519.2 2 2 3 2 3 4	0.0000 0.0763 0.1511 02245 0.2965	9.1556 8.9487 8.7488 8.5559	9.1556 9.0249 8.8999
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.0 2276.0 2261.9 2247.7	2409.1 242.7 2429.4 2436.1	104.83 J125-74 146.629 167.53 188.44	2441.7 2417.9 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.1895 8.0152 7.8466 7.6832 7.5247	8.4520 8.3517 8.2556
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.3710 7.2218 7.0769 6.9360 6.7989	7.9898 7.9082 7.8296
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.6655 6.5355 6.4089 6.2853 6.1647	7.6111 7.5435 7.4782
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	6.0470 5.9319 5.8193 5.7092 5.6013	7.2952 7.2382 7.1829
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.4956 5.3919 5.2901 5.1901 5.0919	7.0265 6.9773 6.9294
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9953 4.9002 4.8066 4.7143 4.6233	6.7927 6.7492 6.7067
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.5335 4.4448 4.3572 4.2705 4.1847 4.0997	6.5841 6.5447 6.5059 6.4678

UNREGISTERED

UNREGISTERED

附錄 2.

Created by Unregistered Version

Saturate	d water-	-Pressure t	able				inyedl	ble (Cont	et eruter	-Tempe	-tetew b	Saturate
		Specific volume, m³/kg		<i>Internal energy,</i> kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Press., <i>P</i> kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u		Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s _g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003		29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 200.8 200.8	29.303 54.688 73.433	2484.4 2470.1 2459.5	2513.7 2524.7 2532.9	0.1059 0.1956 0.2606	8.8690 8.6314 8.4621	8.9749 8.8270 8.7227
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2267.1 2245.4 2222.1	2414.5	121.39 L137.75 191.81 191.81 225.94	2432.3 2423.0 5145153 0 2392.1 2372.3	2553.7	0.4224 0.4762	8.0510 7.9176 7.6738 7.4996 7.2522	8.1488
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	6.8234	7.9073 7.8302 7.7675 7.6693 7.5933
75 100 101.325 125 150	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0		1.2132 1.3028 1.3069 1.3741 1.4337	6.0562	7.4558 7.3589 7.3549 7.2841 7.2231
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732		2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2706.3	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1716 7.1270 7.0877 7.0525 7.0207
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	594.32	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9650 6.9402 6.917
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54 655.16 669.72	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8205 1.8604 1.8970 1.9308 1.9623	4.8916 4.8285	6.820 6.788 6.759
700 750	164.95 167.75	0.001108 0.001111	0.27278 0.25552	696.23 708.40	1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4	2762.8 2765.7	1.9918 2.0195		

UNREGISTERED